
Differential Equations Study Guide1

First Order Equations

General Form of ODE:
dy

dx
= f(x, y)(1)

Initial Value Problem: y′ = f(x, y), y(x0) = y0(2)

Linear Equations

General Form: y′ + p(x)y = f(x)(3)

Integrating Factor: µ(x) = e
∫
p(x)dx(4)

=⇒ d

dx
(µ(x)y) = µ(x)f(x)(5)

General Solution: y =
1

µ(x)

(∫
µ(x)f(x)dx+ C

)
(6)

Homogeneous Equations

General Form: y′ = f(y/x)(7)

Substitution: y = zx(8)

=⇒ y′ = z + xz′(9)

The result is always separable in z:

(10)
dz

f(z)− z
=
dx

x

Bernoulli Equations

General Form: y′ + p(x)y = q(x)yn(11)

Substitution: z = y1−n(12)

The result is always linear in z:

(13) z′ + (1− n)p(x)z = (1− n)q(x)

Exact Equations

General Form: M(x, y)dx+N(x, y)dy = 0(14)

Text for Exactness:
∂M

∂y
=
∂N

∂x
(15)

Solution: φ = C where(16)

M =
∂φ

∂x
and N =

∂φ

∂y
(17)

Method for Solving Exact Equations:

1. Let φ =
∫
M(x, y)dx+ h(y)

2. Set
∂φ

∂y
= N(x, y)

3. Simplify and solve for h(y).

4. Substitute the result for h(y) in the expression for φ from step
1 and then set φ = 0. This is the solution.

Alternatively:

1. Let φ =
∫
N(x, y)dy + g(x)

2. Set
∂φ

∂x
=M(x, y)

3. Simplify and solve for g(x).

4. Substitute the result for g(x) in the expression for φ from step
1 and then set φ = 0. This is the solution.

Integrating Factors

Case 1: If P (x, y) depends only on x, where

(18) P (x, y) =
My −Nx

N
=⇒ µ(y) = e

∫
P (x)dx

then

(19) µ(x)M(x, y)dx+ µ(x)N(x, y)dy = 0

is exact.

Case 2: If Q(x, y) depends only on y, where

(20) Q(x, y) =
Nx −My

M
=⇒ µ(y) = e

∫
Q(y)dy

Then

(21) µ(y)M(x, y)dx+ µ(y)N(x, y)dy = 0

is exact.
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Second Order Linear Equations

General Form of the Equation

General Form: a(t)y′′ + b(t)y′ + c(t)y = g(t)(22)

Homogeneous: a(t)y′′ + b(t)y′ + c(t)y = 0(23)

Standard Form: y′′ + p(t)y′ + q(t)y = f(t)(24)

The general solution of (22) or (24) is

(25) y = C1y1(t) + C2y2(t) + yp(t)

where y1(t) and y2(t) are linearly independent solutions of (23).

Linear Independence and The Wronskian

Two functions f(x) and g(x) are linearly dependent if there
exist numbers a and b, not both zero, such that af(x)+ bg(x) = 0
for all x. If no such numbers exist then they are linearly inde-
pendent.

If y1 and y2 are two solutions of (23) then

Wronskian: W (t) = y1(t)y
′
2(t)− y′1(t)y2(t)(26)

Abel’s Formula: W (t) = Ce−
∫
p(t)dt(27)

and the following are all equivalent:

1. {y1, y2} are linearly independent.

2. {y1, y2} are a fundamental set of solutions.

3. W (y1, y2)(t0) 6= 0 at some point t0.

4. W (y1, y2)(t) 6= 0 for all t.

Initial Value Problem

(28)

 y′′ + p(t)y′ + q(t)y = 0
y(t0) = y0

y′(t0) = y1

Linear Equation: Constant Coefficients

Homogeneous: ay′′ + by′ + cy = 0(29)

Non-homogeneous: ay′′ + by′ + cy = g(t)(30)

Characteristic Equation: ar2 + br + c = 0(31)

Quadratic Roots: r =
−b±

√
b2 − 4ac

2a
(32)

The solution of (29) is given by:

Real Roots(r1 6= r2) : yh = C1e
r1t + C2e

r2t(33)

Repeated(r1 = r2) : yh = (C1 + C2t)e
r1t(34)

Complex(r = α± iβ) : yH = eαt(C1 cosβt+ C2 sinβt)(35)

The solution of (30) is y = yp + yh where yh is given by (33)
through (35) and yp is found by undetermined coefficients or
reduction of order.

Heuristics for Undetermined Coefficients
(Trial and Error)

If f(t) = then guess that a particular solution yp =

Pn(t) ts(A0 +A1t+ · · ·+Ant
n)

Pn(t)e
at ts(A0 +A1t+ · · ·+Ant

n)eat

Pn(t)e
at sin bt tseat[(A0 +A1t+ · · ·+Ant

n) cos bt
or Pn(t)e

at cos bt +(A0 +A1t+ · · ·+Ant
n) sin bt]

Method of Reduction of Order

When solving (23), given y1, then y2 can be found by solving

(36) y1y
′
2 − y′1y2 = Ce−

∫
p(t)dt

The solution is given by

(37) y2 = y1

∫
e−

∫
p(x)dxdx

y1(x)2

Method of Variation of Parameters

If y1(t) and y2(t) are a fundamental set of solutions to (23) then
a particular solution to (24) is

(38) yP (t) = −y1(t)

∫
y2(t)f(t)

W (t)
dt+ y2(t)

∫
y1(t)f(t)

W (t)
dt

Cauchy-Euler Equation

ODE: ax2y′′ + bxy′ + cy = 0(39)

Auxilliary Equation: ar(r − 1) + br + c = 0(40)

The solutions of (39) depend on the roots r1,2 of (40):

Real Roots: y = C1x
r1 + C2x

r2(41)

Repeated Root: y = C1x
r + C2x

r lnx(42)

Complex: y = xα[C1 cos(β lnx) + C2 sin(β lnx)](43)

In (43) r1,2 = α± iβ, where α,β ∈ R

Series Solutions

(44) (x− x0)
2y′′ + (x− x0)p(x)y

′ + q(x)y = 0

If x0 is a regular point of (44) then

(45) y1(t) = (x− x0)
n
∞∑
k=0

ak(x− xk)k

At a Regular Singular Point x0:

Indicial Equation: r2 + (p(0)− 1)r + q(0) = 0(46)

First Solution: y1 = (x− x0)
r1

∞∑
k=0

ak(x− xk)k(47)

Where r1 is the larger real root if both roots of (46) are real or
either root if the solutions are complex.


